Do NOT move the desk!!
Turn your phone OFF!!
Put your phone up!!
Sit down!!
Be quiet!!
Prepare to work!!
Keep your hands to yourself!!

Soft book - Pg 23
Slope of a Line
a) Slope =>
$$M = \frac{R_{15e}}{R_{un}} = \frac{4u}{4x} = \frac{4u-4i}{x_2-x_1}$$

Points => (x_1y_1) (x_2, y_2)
 (x_1y_1) (x_2, y_2)
 (x_2, y_1) (x_2, y_2)
 (x_1, y_1) (x_2, y_2)
 (x_2, y_2) (x_2, y_2) (x_2, y_2)
 (x_2, y_2) (x_2, y_2)

3)
$$(-1,-4)$$
 $(1,4)$
 X_{2} y_{2} y_{3} y_{3}
 $M = \frac{y_{2} - y_{1}}{x_{2} - x_{1}} = \frac{-1}{-1} = \frac{-8}{-2} = \frac{4}{1}$
 $4)$ $(1,2)(-3,2)$
 x_{1} y_{2} x_{2} y_{2}
 $M = \frac{y_{2} - y_{1}}{y_{2} - y_{1}} = \frac{2 - 2}{-3 - 1} = \frac{0}{-4} = 0$
 $(-3,-2)$ $(-1,-4)$
 x_{1} y_{2} x_{2} y_{2}
 $M = \frac{-4 - (-2)}{-1 - (-3)} = \frac{-2}{2} = \frac{-1}{1}$

$$M = \frac{4^{3} - 4^{3}}{2^{3} - 2^{3}} = \frac{2^{3} - 2^{3}}{3^{3} - 1} = \frac{0}{-4} = 0$$

$$A = 0$$

$$A$$